Add Context and Enrich Alert Information for a More Effective Response with DFLabs and ArcSight

Responding to a new security incident in the fastest possible time frame is critical for any security operations center (SOC) or computer security incident response team (CSIRT), but having the necessary information at your fingertips is key in order to help improve response times and appropriately deal with the threat at hand. In this blog post we’ll take a closer look at how security teams can increase the efficiency and effectiveness of their response by adding context and enrichment to the alert information directly from ArcSight, when utilizing DFLabs’ Security Orchestration, Automation and Response (SOAR) platform and its many other bidirectional integrations.

The Problem

Organizations are generating more log data than ever before and are increasingly turning to SIEM tools to help manage, correlate and alert on potential events from this large quantity of data. Once data is correlated and an alert is generated, enriching alert data is often a manual task which consumes a significant amount of analysts’ time. Pivoting from a single alert or from enriched information is often also a manual process, requiring many more custom written queries within the SIEM. Enriched and additional data must then be correlated manually by the analyst before it becomes actionable.

On a daily basis an analyst will face a number of challenges and is likely to be asking themselves the following questions:

  1. How can I use the SIEM logs to add context to a security event?
  2. How can I enrich information from the initial security alert?
  3. How can I pivot from the initial security alert to further my investigation?
The DFLabs and ArcSight Solution

DFLabs and MicroFocus ArcSight bring SOAR and SIEM together to allow rapid, informed responses to security incidents based on enriched, actionable information. DFLabs’ IncMan SOAR platform allows users to automatically query ArcSight to pivot from an initial alert to gather increase insight into the activity within the organization. IncMan also allows users to enrich information retrieved from ArcSight, such as IP addresses, hostnames and domains, using any number of IncMan’s other integrations.

About MicroFocus ArcSight

ArcSight is an industry-leading Security Information and Event Management (SIEM) solution from MicroFocus. ArcSight collects and analyzes events from across systems and security tools. It detects security threats in real time so that analysts respond quickly, and it scales to meet demanding security requirements. ArcSight’s advanced distributed correlation engine, helps security teams detect and respond to internal and external threats, reduces response time from hours or days to just minutes.

Use Case

To get a real understanding of how the two solutions work together, here is a simple use case in action.

A Web Application Firewall (WAF) has observed a potential attack against an application server in the organization’s DMZ. IncMan automatically responds by initiating an appropriate runbook for the alert. The runbook begins by performing basic enrichment on the source IP address of the malicious traffic. This basic enrichment is followed by a query for IP reputation information on the source IP address from the organization’s threat reputation service of choice.  

Following the threat reputation search, ArcSight is queried for any other events which have been recently generated by the source IP address. If ArcSight returns any other recent events generated by the source IP address, or the source IP address has a negative threat reputation, the severity of the incident is automatically upgraded to High. The analyst is then presented with a user choice decision to determine if the source IP address should be blocked at the perimeter firewall. If the analyst chooses to automatically block the source IP address, a ticket will be created in ArcSight Enterprise Security Manager (ESM) to notify the appropriate teams to follow up on the emergency change according to the organization’s policies.

These actions are followed by a second query to ArcSight, this time for any other recent events involving the web application server. If ArcSight returns any other recent events generated from the web application server, the severity of the incident is automatically upgraded to High (unless it has already previously been upgraded).  The runbook concludes by performing a query of the organization’s endpoint detection solution for all recent events from the web application server. This information will be retained for review by the analyst during the investigative process.

ArcSight

 

ArcSight Actions

In summary, here are the actions available to security analysts by using ArcSight.

Enrichment:

  • Get Active List Entries
  • Search Into Events

Containment:

  • Add Active List Entries
  • Clean Active List Entries

Notification:

  • Create Ticket
  • Get Ticket
  • Update Ticket

Integrating ArcSight with DFLabs’ IncMan SOAR allows organizations to efficiently triage the volume of alerts being generated by the SIEM, automatically prioritizing those alerts which may pose the greatest risk to the organization. By automating and orchestrating the SIEM with other security solutions, IncMan SOAR can automatically enrich the alert information, then pivot based on the enriched information as an analyst would do during a manual investigation. This ability to automatically enrich and pivot allows IncMan to more accurately prioritize incidents which may initially seem innocuous.  

Automatic Observable Harvesting With IncMan SOAR

As soon as the first indicator of compromise is located, the most common next step is to try to pivot from that indicator to find additional indicators or evidence on the network. While it is sometimes necessary to perform your own research to determine what additional additional indicators may be present, it is common to make use of previous research when looking for new indicators to hunt for.

This is especially true when dealing with an indicator of malicious software.  Perhaps you have found a host communicating with an IP address known to be associated with a particular malware variant; the logical next step would be to search for communication with other IPs, domains and URLs the malware may be associated with, along with looking for the host-based activity the malware is known to use.

For example, suppose an IDS alerted on the IP address 144.202.87[.]106.  A quick search on VirusTotal indicates that this IP address may be malicious, however, it does not provide much information which could be used to pivot to other indicators.  So where does every good analyst turn at this point? Google, of course! A quick Google search for the IP address returns several results, including a blog post from MalwareBytes on the Hidden Bee miner. 

Along with a detailed analysis of the Hidden Bee miner, the post also includes several other IP addresses and URLs which analysts observed in this attack.  Now we have some data to pivot and hunt with!

This entire analysis from the MalwareBytes team can easily be added into DFLabs’ IncMan SOAR platform by copying and pasting the blog into the Additional Info section of the incident.  In addition to allowing this information to be accessed by the working on this incident, adding this text to the Additional Info field has an additional advantage we have not yet discussed; Automatic Observable Harvesting.

When text is added to a field such as the Additional Info fields in IncMan, Automatic Observable Harvesting will automatically parse through the text and attempt to harvest observables from the unstructured text.

In the case of the Hidden Bee analysis from MalwareBytes, Automatic Observable Harvesting automatically harvested four IP addresses, a URL and a domain from the unstructured text and added them to the observables section.

While six observables may not take long to manually enter into the platform, it is not uncommon to find detailed malware analysis that contains dozens of IP addresses, hash values, domains, and other observables. Entering this many observables into IncMan manually in order to take advantage of IncMan’s automation and orchestration features on the new observables would be a time-consuming process. Automatic Observable Harvesting performs this task automatically.

Once these new observables are added into IncMan, analysts can take advantage of IncMan’s automation and orchestration features to begin performing additional enrichment on the observables, as well as searching across any internal data sources for evidence of the observables and blocking them if needed.

If you would like to see IncMan SOAR from DFLabs in action, including its Automatic Observable Harvesting functionality, get in touch to arrange and see one to one demo now.

Security Automation vs Security Orchestration – What’s the Difference?

The terms security automation and security orchestration  are often used almost interchangeably nowadays in the IT ecosystem. But it’s very important to note that these terms have completely different meanings and purposes. The aim of this blog is to discuss the core differences by explaining what these terms mean exactly, what their functions are and how they can be used within an IT context.

When automation emerged in the security field, it became a crucial asset for security teams that were already exhausted from time-consuming, repetitive, low-level tasks. Orchestration was the next step for better time and resource management for teams, as it helped professionals respond to issues faster, and prioritize important tasks with defined and consistent processes and workflows.

Security orchestration vs. security automation – the difference

When we speak about automation, it’s often wrongly assumed to mean automating an entire process, which is not always correct. The proper definition of security automation is setting a single security operations-related task to run on its own, without the need for human intervention (or a task could be semi-automated if some form of human decision is required).

On the other hand, orchestration, in essence, refers to making use of multiple automation tasks across one or more platforms. This means that automation tasks are part of the overall orchestration process, which covers larger, more complex scenarios and tasks. With this being said, we can say that orchestration means the automated coordination and management of systems, middleware, and services. Security orchestration uses multiple automated and semi-automated tasks to automatically execute a complex process or workflow, and these can consist of multiple automated tasks or systems.

Security Orchestration aims to streamline and optimize repeatable processes and ensure correct execution of tasks. Anytime a process becomes repeatable and tasks can be automated, orchestration can be used to optimize the process and eliminate redundancies.

Main purpose

Automation and orchestration can be best understood by differentiating between a single task and a complete process. Automation only handles a single task, while orchestration makes use of a more complex set of tasks and processes. When a task is automated, it speeds things up, especially when it comes to repeating basic tasks. But optimizing a process is not possible with simple automation, as it only handles a single task. A process is not limited to a single function, so optimization is only possible with orchestration. If done right, orchestration achieves the main goal of speeding up the entire process from start to finish.

Benefits

By now, we believe you’re aware of the core difference of security automation vs security orchestration, but bare in mind that these two are not completely inseparable and are used in conjunction with each other. As we’ve been discussing so far, security orchestration is not possible without automation. Now let’s go through the main benefits of both orchestration and automation:

Automation makes many time-consuming tasks run smoothly without (or with little) human intervention, thus allowing organizations to take a more proactive approach in protecting their infrastructure from increasing volumes of security alerts and potential incidents, which would take far too many man-hours to be able to complete.

The primary goal of orchestration is to optimize a process. While security automation is limited to automating a particular task, orchestration goes way beyond this. With automation providing the necessary speed to the processes, orchestration, on the other hand, provides a streamlined approach and process optimization.

What happens when these two work together?
  • Better utilization of assets, allowing the organization to be more efficient and effective
  • Improved ROI on existing security tools and technologies
  • Increased productivity – all tasks are automated and orchestrated between themselves
  • Reduced security analyst fatigue from alert and task overload
  • Processes remain consistent due to standardization of activities.
Final thoughts

Orchestration and automation work together to empower security teams, allowing them to be more effective, and ultimately focus on incident analysis and important investigations, rather than on manual, time-consuming and repetitive tasks. Having all of the tools to hand within a centralized, single and intuitive orchestration platform can only benefit your security operations team. This ultimately means more time for analysts and incident respondents to focus on issues that require a level of human intervention for a higher level of investigation for mitigation and remediation.

Both of these concepts: security automation and security orchestration relate to each other, and it’s often very difficult to differentiate between them. As we discussed in detail regarding this confusion, one last piece of advice would be to look at these in their fundamental difference, which lies in their varying individual goals. Automation is all about codification and orchestration is all about systematization of processes. The adequate differentiation between these two principles will help you to achieve a streamlined and accurate execution of your incident response processes and tasks.

Are you ready to see the real benefits of security automation and orchestration in action? Contact us and request to see a live demo of IncMan SOAR to see how it can transform your SOC today.

National Cybersecurity Awareness Month – Understanding the Benefits of Implementing SOAR Technology

About National Cybersecurity Awareness Month (NCSAM)

Every year since 2004, October has been recognized and celebrated as National Cybersecurity Awareness Month (NCSAM). NCSAM was created in a united effort between the Department of Homeland Security and the National Cyber Security Alliance to raise awareness on a variety of cybersecurity issues. NCSAM has grown exponentially over the years, reaching consumers, small and medium-sized businesses, corporations, government entities, the military, educational institutions, and young people nationally and internationally. NCSAM was designed with one goal, to engage and educate the public as well as the private sector partners through a series of events and initiatives with the goal of raising awareness about cybersecurity in order to increase the resiliency of the nation in the event of facing cyber incidents. This unified effort is necessary to maintain a cyberspace that is safer and more resilient and remains a source of tremendous opportunity and growth for years to come.

What’s New in 2018

This year, National Cybersecurity Awareness Month (NCSAM) focuses on internet security as a shared responsibility among consumers, businesses and the cyber workforce. NCSAM 2018 aims to “shine a spotlight on the critical need to build a strong, cyber-secure workforce to help ensure families, communities, businesses and the country’s infrastructure are better protected.” The month is divided into four week-long topics:

Week 1 (Oct. 1–5): Make Your Home a Haven for Online Safety
Week 2 (Oct. 8–12): Millions of Rewarding Jobs — Educating for a Career in Cybersecurity
Week 3 (Oct. 15–19): It’s Everyone’s Job to Ensure Online Safety at Work
Week 4 (Oct. 22–26): Safeguarding the Nation’s Critical Infrastructure

Staying Safe Online

This month, organizations should make it a priority to build on their existing cybersecurity knowledge and practices, better understand the current cyber threats impacting their industry. With the spotlight on security, NCSAM is a great time to review current cybersecurity strategies and map out strategic actions that could be undertaken to secure the organization’s infrastructure as much as possible.

Even though preventing every single attack is an impossible mission, all stakeholders within any organization, regardless of their position, capability or involvement within cybersecurity should aim to increase their security knowledge, as one phishing attack could have devastating consequences. Working towards increasing levels of awareness and training, strengthening partnerships and defenses, exchanging valuable information, and with advancing technology will help organizations to protect their brands and valuable assets.

With that being said, we know from experience that today cyber attacks are inevitable and regardless of the vast number of preventative measures we take to protect ourselves, our businesses and our infrastructure are still at risk.  We can never be 100% certain that they are fully secure. Therefore it is key that organizations also have an appropriate and in-depth incident response plan in place in order to be able to respond efficiently and effectively to any type of incident that should unfortunately occur.

How SOAR Technology Helps To Improve Incident Response

Effective cyber defense demands a team effort where employees, end users, and enterprises recognize their shared role in reducing cybersecurity risks. As the ever-evolving cybersecurity landscape poses new challenges, companies are pushed even more to combat the growing number and even more sophisticated levels of cyber attacks. Organizations across all sectors and industries are a potential target. Security operations teams need to be prepared to respond to existing as well as to new types of cyber threats, in order to fully defend and protect their company assets.

As prevention is becoming increasingly difficult for security teams, some organizations also tend to have a weakness when it comes to incident response and the processes and workflows that should be implemented in order to minimize the impact. The main reasons why companies are failing at Incident Response is due to a number of factors including but not limited to inadequate resources, lack of skilled analysts, failure to manage phases, task overload and more.

Adopting a complete and comprehensive Security Orchestration, Automation and Response (SOAR) solution can go a long way towards preventing and mitigating the consequences of cyber incidents. The deployment of a SOAR solution can help alleviate a number of current security operations challenges (including the growing number of alerts, increased workloads and repetitive tasks, current talent shortage and competition for skilled analysts, lack of knowledge transfer and budget constraints), while improving the overall organization’s security posture by eliminating the most-common scenarios of resource-constrained security teams struggling to identify critical cyber incidents.

Some of the key benefits of using a Security Orchestration, Automation and Response (SOAR) solution are outlined below.

Top 10 Benefits of Adopting a SOAR Solution
  • Acts as a force multiplier for security teams
  • Automates manual repetitive processes to avoid alert fatigue
  • Responds to all security alerts eliminating false positives
  • Decreases the time to detect, remediate and resolve incidents
  • Simplifies incident response and investigation processes
  • Integrates with existing security operations tools and technologies
  • Improves the overall efficiency and effectiveness of existing security programs
  • Reduces operational costs and improves ROI
  • Minimizes the risk and damage resulting from incidents
  • Meets legal and regulatory compliance (e.g. NIST and GDPR) including incident reporting and breach notification
Security Orchestration, Automation and Response With DFLabs IncMan SOAR Platform

DFLabs’ IncMan SOAR platform provides a complete and comprehensive solution to streamline the full incident response lifecycle. IncMan SOAR, is designed for SOCs, CSIRTs and MSSPs to automate, orchestrate and measure security operations and incident response processes and tasks, all from within one single, intuitive platform. IncMan SOAR is easy to implement and use, allowing you to leverage the capabilities of your existing security infrastructure and assets.

Take this October’s national cybersecurity awareness month seriously and do your part in learning something new which could help your organization to better protect itself. Contact us today to organize a bespoke demonstration and to discuss your individual requirements.

Automate Evidence Gathering and Threat Containment by Orchestrating Response Efforts with Carbon Black Defense

The integration between DFLabs’ IncMan R3 Rapid Response Runbooks and Carbon Black Defense’s next-generation antivirus and EDR solution allows companies to automate evidence gathering and threat containment efforts, and cut dwell times down to a manageable level.

Equipped with strong evidence data gathered from Carbon Black Defense, analysts and security teams can quickly disposition and act to remediate an incident. Carbon Black Defense uses their award-winning Streaming Prevention technology to take a holistic approach to an organization’s critical infrastructure.

The Problem

Sophisticated attacks that organizations have been experiencing cause traditional antivirus to become ineffective. Signature-based detection mechanisms can still detect known threats, but the new generation of non-malware attacks are going undetected in our networks and lying dormant for extended periods of time, enabling attackers to use our environments as their own personal playground.

To manage these deficiencies, Security Operation Centers are employing a wider range of tools to close the gap created by their antivirus solution. Evidence gathering across these tools have added to an analyst’s investigational times, which are allowing our adversaries ample time to secure their foothold in our networks.

Three common problems include:

  1. Attack vectors have morphed from file to file-less tactics which have caused traditional, signature-based antivirus to no longer be an effective detection mechanism
  2. Dwell time is being measured in days which have exceeded triple-digit figures
  3. Manual evidence gathering costs Security Operations teams valuable time when investigating possible incidents
DFLabs and Carbon Black Solution

An incident can turn into a breach in a few minutes, and this makes early detection and remediation a crucial aspect of an organization’s security program. Utilizing IncMan’s integration with Carbon Black Defense allows organizations to automate evidence gathering at their endpoints and present their analysts with critical information such as running processes, system information, and historical event detail to accelerate their decision-making ability to quickly remediate an issue.

These remediation tasks range from terminating processes on a victim machine to completely removing it from the network to allow for hands-on investigation and recovery.

About Carbon Black Defense

Carbon Black Defense is a next-generation antivirus and endpoint detection and remediation solution which utilizes Carbon Black’s proprietary Streaming Prevention technology to protect organizations from the full spectrum of malware and non-malware attacks.

By leveraging event stream processing, Streaming Prevention in Carbon Black Defense continuously updates risk profiles made from endpoint activity and when multiple potentially malicious events are observed, Carbon Black Defense will take action to block the would-be attack. This next-generation antivirus solution is proving why Carbon Black Defense will be the industry’s de facto standard in the following years.

Use Case

An IDS alert is received and triggers an incident in IncMan. Through an R3 Rapid Response Runbook, enrichment actions are initiated by first querying IP reputation services for the source of the suspicious activity. A second IP reputation service is then queried to verify the results of the first query. Once the reputation checks have been completed, the priority of the incident is set according to the results of the reputation checks and a ticket is opened in the organization’s ticket management system.

IncMan continues to process the runbook by gathering additional enrichment data for the incident handler. User account information is pulled from Active Directory and Carbon Black Defense is queried to collect system information, including all running processes on the victim machine. In addition to system information, IncMan also queries Carbon Black Defense events from the victim machine observed in the last 30 days.

Once the enrichment information is gathered, the incident handler will receive notification of the incident. The incident handler will be prompted with a User Choice decision to determine if containment actions may be appropriate. The incident handler can review the information gathered up to this point to determine if automated containment actions should be performed at this point. If the incident handler determines the activity is malicious and automated containment actions are appropriate, the machine will be quarantined from the network and the source address will be blocked at the firewall.

Carbon Black Defense Actions

Enrichment:

  • Directory Listing
  • Download File
  • Event Details
  • List Processes
  • Memory Dump
  • Policies List
  • Search Into Events
  • Search Process
  • System Info

Containment:

  • Change Device Status
  • Delete File
  • Terminate Process
Summary

Carbon Black Defense is an extremely powerful endpoint solution, capable of detecting advanced threats, supporting detail data enrichment, and enabling rapid incident response. Orchestrating actions between Carbon Black Defense and other third-party solutions through IncMan integrations allows organizations to harness the power of Carbon Black Defense at any stage of the incident response process, providing a more efficient and effective response process.

How to Score a High IQ when Implementing Threat Intelligence

What is Threat Intelligence

Threat Intelligence has morphed from a catchy marketing buzzword to a highly sought-after tool, which when used correctly, can bring immense value to an organization. However, because it is in high demand and organizations are researching and adopting it in some form or another, the market has become flooded with products and services promising to provide “Threat Intelligence” to an organization. Unfortunately, in many cases, the “Threat Intelligence” provided is only one piece of a larger puzzle.

When working with Threat Intelligence it is easier to look at it as two separate concepts:

  • Threat Data (aka Threat Feeds)
  • Threat Context (aka Intelligence)


These concepts combined produce the relevant and actionable “Intelligence” organizations need to better align their security goals with their business’s long-term objectives.

Threat Data is raw data feeds which include artifacts such as malicious IPs or URLs which generally lack context regarding the why behind their motives or malicious behavior. Threat data alone cannot provide the intelligence necessary to make informed decisions regarding the security of our environments, but when paired with Threat Context we are given a clearer picture of its risk towards our organization.

Threat Context is more elusive and is usually where organizations fall short when implementing a Threat Intelligence program. To apply “context” an organization must have a clear goal of what they are trying to achieve by introducing a piece of threat data into their security program. Without a clear vision, threat intelligence can become an expensive drain on resources with little to any real value.

Threat Intelligence Challenges

As more organizations begin to adopt threat intelligence practices into their security programs the need for a more structured implementation path has become greater. Threat intelligence implementation is a marathon process which needs to be carefully planned and executed to ensure it is agile and built on a strong foundation.

Understanding some common challenges organizations have faced while building their threat intelligence program can provide valuable information to those organizations looking to adopt threat intelligence into their security monitoring program.

Does Not Align with Business Goals

One of the biggest mistakes made when implementing a threat intelligence program is the failure to ensure its use is identified by a risk to the business. When evaluating threat intelligence feeds, security teams will want to identify the business problem they will help solve and examine how they will utilize these data sources in conjunction with their internal threat intelligence feeds.

Performing a risk assessment can help identify the risks an organization may face and what can be done to minimize its impact on the business. This practice will arm an organization with valuable information on how best to protect their business and what types of intelligence will make the most impact for their organization.

Choosing the Wrong Intelligence Data

Over the past couple of years, threat intelligence data or feeds have become synonymous with a threat intelligence program. This data is a crucial part of an intelligence program, but without context, an organization runs the risk of adding yet another data source without fully recognizing its value. When evaluating threat intelligence data, consider the following:

  • What is the focus?

A majority of threat intelligence feeds focus on a single area of interest such as malicious domains, IP addresses, or hash values. Knowing how these feed types will be utilized within your organization will determine their overall value.

  • Where is the information gathered from?

There is an endless number of free and paid threat intelligence subscription services available to take advantage of, but not all data sources are created equal. There are six main types of intelligence data sources to be aware of when evaluating a threat feed:

  • open source
  • malware processing
  • scanning/crawling
  • honeypots
  • human intelligence
  • internal telemetry


Organizations will want to have a good understanding of where these feeds are derived from and ensure, especially if they are delivered via a paid service, that they can be evaluated against their internal intelligence to recognize their maximum potential.

  • What frequency are they updated?

Ensuring threat intelligence feeds are updated and relayed at near real-time is an invaluable feature of any reputable data source. Ingesting stale or incomplete data can cause an organization to focus on the wrong objectives which can lead to data overload and alert fatigue.

Asking these questions when evaluating a new threat feed will help identify what sources of intelligence may be the best fit for your business need, but the real value will be displayed through its analysis. Performing proper analysis of a threat intelligence feed is what will provide the context necessary for an organization to make operational changes to better secure their environment. Without analysis, these feeds become another potentially costly, unmanageable source of noise.

Failure to Operationalize Intelligence Data

The ability to utilize threat intelligence data in an operational capacity is the ultimate goal of a threat intelligence program. A successful program will present an organization with greater insight into the potential threats their environment faces and provide its security team a way to prioritize their alerting based on the risk it poses to business. Failure to align an organization’s security program with their business objectives can have a direct impact on the intelligence sources they utilize and how they are able to operationalize their intelligence.

Overcoming these challenges while implementing a threat intelligence program can be tricky. It is an ongoing, and at time tedious, process which if implemented correctly will adapt as your business grows. If you do find yourself up against any of these challenges, take a step back and make sure that the utilization of the intelligence source fits a business objective, is sourced appropriately for its use case, and it can be utilized to make operational changes. If you can answer yes to all of these criteria, you are on your way to achieving a higher cyber threat intelligence.

How Security Orchestration and Automation Helps You Work Smarter and Improve Incident Response

We’ve been witnessing the continual transformation of the cyber security ecosystem in the past few years. With cyber attacks becoming ever-more sophisticated, organizations have been forced to spend huge amounts of their budgets on improving their security programs in an attempt to protect their infrastructure, corporate assets, and their brand reputation from potential hackers.

Recent research, however, still shows that a large number of organizations are experiencing an alarming shortage of the cyber security skills and tools required to adequately detect and prevent the variety of attacks being faced by organizations. Protecting your organization today is a never-ending and complex process. I am sure, like me, you are regularly reading many cyber security articles and statistics detailing these alarming figures, which are becoming more of a daily reality.

Many organizations are now transitioning the majority of their efforts on implementing comprehensive incident response plans, processes and workflows to respond to potential incidents in the quickest and most efficient ways possible. But even with this new approach, many experts and organizations alike express concerns that we will still be faced with a shortage of skilled labor able to deal with these security incidents, with security teams struggling to fight back thousands of potential threats generated from incoming security alerts on a daily basis.

With so many mundane and repetitive tasks to complete, there’s little time for new strategies, planning, training, and knowledge transfer. To make things worse, security teams are spending far too much of their valuable time reacting to the increasing numbers of false positives, to threats that aren’t real. This results in spending hours, even days on analyzing and investigating false positives, which leaves little time for the team to focus on mitigating real, legitimate cyber threats, which could result in a serious and potentially damaging security incident. Essentially, we need to enable security operations teams to work smarter, not harder; but is this easier said than done?

How does security orchestration and automation help security teams?

With this in mind, organizations need to find new ways combat these issues, while at the same time add value to their existing security program and tools and technologies being used, to improve their overall security operations performance. The answer is in the use of Security Orchestration, Automation and Response (SOAR) technology.

Security Orchestration, Automation, and Response SOAR solutions focus on the following core functions of security operations and incident response and help security operations centers (SOCs), computer security incident response teams (CSIRTs) and managed security service providers (MSSPs) work smarter and act faster:

  • Orchestration – Enables security operations to connect and coordinate complex workflows, tools and technologies, with flexible SOAR solutions supporting a vast number of integrations and APIs.
  • Automation – Speeds up the entire workflow by executing actions across infrastructures in seconds, instead of hours if tasks are performed manually.
  • Collaboration – Promotes more efficient communication and knowledge transfer across security teams
  • Incident Management – Activities and information from a single incident are managed within a single, comprehensive platform, allowing tactical and strategic decision makers alike complete oversight of the incident management process.
  • Dashboards and Reporting: Combines of core information to provide a holistic view of the organization’s security infrastructure also providing detailed information for any incident, event or case when it is required by different levels of stakeholders.

Now let’s focus on the details of these core functions and see how they improve the overall performance.

Orchestration

Security Orchestration is the capacity to coordinate, formalize, and automate responsive actions upon measuring risk posture and the state of affairs in the environment; more precisely, it’s the fashion in which disparate security systems are connected together to deliver larger visibility and enable automated responses; it also coordinates volumes of alert data into workflows.

Automation

With automation, multiple tasks on partial or full elements of the security process can be executed without the need for human intervention. Security operations can create sophisticated processes with automation, which can improve accuracy. While the concepts behind both security orchestration and automation are somewhat related, their aims are quite different. Automation aims to reduce the time processes take, making them more effective and efficient by automating repeatable processes and tasks. Some SOAR solutions also applying machine learning to recommend actions based on the responses to previous incidents. Automation also aims to reduce the number of mundane actions that must be completed manually by security analysts, allowing them to focus on a high level and more important actions that require human intervention.

Incident Management and Collaboration

Incident management and collaboration consist of the following activities:

  • Alert processing and triage
  • Journaling and evidentiary support
  • Analytics and incident investigation
  • Threat intelligence management
  • Case and event management, and workflow

Security orchestration and automation tools are designed to facilitate all of these processes, while at the same making the process of threat identification, investigation and management significantly easier for the entire security operations team.

Dashboards and Reporting

SOAR tools generate reports and dashboards for a range of stakeholders from the day to day analysts, SOC managers, other organization departments and even C-level executives. These dashboards and reports are not only used to provide security intelligence, but they can also be used to develop analyst skills.

Human Factor Still Paramount

Security orchestration and automation solutions create a more focused and streamlined approach and methodology for detection and response to cyber threats by integrating the company’s security capacity and resources with existing experts and processes in order to automate manual tasks, orchestrate processes and workflows, and create an overall faster and more effective incident response.

Whichever security orchestration and automation solution a company chooses, it is important to remember that no one single miracle solution guarantees full protection. Human skills remain the core of every future security undertaking and the use of security orchestration and automation should not be viewed as a total replacement of a security team. Rather, it should be considered a supplement that enables the security team by easing the workload, alleviating the repetitive, time-consuming tasks, formalizing processes and workflows, while supporting and empowering the existing security team to turn into proactive threat hunters as opposed to reactive incident investigators.

Humans and machines combined can work wonders for the overall performance of an organization’s security program and in the long run allows the experts in the team to customize and tailor their actions to suit the specific business needs of the company.

Finally, by investing in a SOAR solution for threat detection and incident response, organizations can increase their capacity to detect, respond to and remediate all security incidents and alerts they are faced with in the quickest possible time frames.

Contain Threats and Stop Data Exfiltration with DFLabs and McAfee Web Gateway

Security teams are inundated with a constant barrage of alerts. Depending on the severity of each alert, it is often minutes to hours before an analyst can properly triage and investigate the alert. The manual triage and investigation process adds additional time, as analysts must determine the validity of the alert and gather additional information. While these manual processes are occurring, the potential attacker has been hard at work; likely using scripted or automated processes to probe the network, pivot to other hosts and potential begin exfiltrating data. By the time the security team has verified the threat and begun blocking the attacker, the damage is often already done.

So, how can security operations temporarily contain a possible threat and/or permanently block a known threat? This blog will explain how by utilizing the IncMan SOAR technology from DFLabs with its integration with McAfee Web Gateway, including a use case example in action.

DFLabs and McAfee Web Gateway Integration

McAfee Web Gateway delivers comprehensive security for all aspects of web traffic in one high-performance appliance software architecture. For user-initiated web requests, McAfee Web Gateway first enforces an organization’s internet use policy. For all allowed traffic, it then uses local and global techniques to analyze the nature and intent of all content and active code, providing immediate protection. McAfee Web Gateway can examine the secure sockets layer (SSL) traffic to provide in-depth protection against malicious code or control applications.

Attackers are scripting and automating their attacks, meaning that additional infections and data exfiltration can occur in mere seconds. Security teams must find new ways to keep pace with attackers in order to minimize the impact from even a moderately skilled threat. Utilizing DFLabs IncMan’s integration with McAfee Web Gateway, IncMan’s R3 Rapid Response Runbooks automate and orchestrate the response to newly detected threats on the network, enabling organizations to immediately take containment actions on verified malicious IPs and ports, as well as temporarily preventing additional damage while further investigation is performed on suspicious IP addresses and ports.

Use Case in Action

McAfee Web Gateway has generated an alert based on potentially malicious traffic originating from a host inside the network to an unknown host on the Internet. Based on a predefined Incident Template, IncMan has automatically generated an Incident and notified the Security Operations Team. As part of the Incident Template, the following R3 Runbook has been automatically added to the Incident and executed.

 

Data exfiltration can occur in mere seconds. By the time a security team has validated the threat and blocked the malicious traffic, it is often too late.  DFLabs integration with McAfee Web Gateway allows organizations to automatically contain the threat and stop the bleeding until further action can be taken.

The Runbook begins by performing several basic Enrichment actions, such as gathering WHOIS and reverse DNS information on the destination IP address.  Following these basic Enrichment actions, the Runbook continues by querying two separate threat reputation services for the destination IP address. If either threat reputation service returns threat data above a certain user-defined threshold the Runbook will continue along a path which takes additional action. Otherwise, the Runbook will record all previously gathered data, then end.

If either threat reputation service has deemed the destination IP address to be potentially malicious, the Runbook will continue by using an additional Enrichment action to query the organization’s IT asset inventory.  Although this information will not be utilized by the automated Runbook, it will play an important role in the process shortly.

Next, the Runbook will query a database of known-good hosts for the destination IP address.  In this use case, it is assumed that this external database has been preconfigured by the organization and contains a list of all known-good, whitelisted, external hosts by IP address, hostname and domain. If the destination IP address does not exist in the known-good hosts’ database, the security analyst will be prompted with a User Choice decision. This optional special condition within IncMan will pause the automatic execution of the Runbook, allow the security analyst to review the previously gathered Enrichment information and allow the security analyst to make a conditional flow decision.  In this case, the User Choice decision asks the security analyst if they wish to block the destination IP address. If the analyst chooses to block the destination IP address, a Containment action will utilize McAfee Web Gateway to block the IP until further investigation and remediation can be conducted.

If you want to learn more about how to contain threats, block malicious traffic and halt data exfiltration utilizing Security Orchestration, Automation and Response (SOAR) technology, get in touch with one of the team today to request your live one to one demo.

Companies Are Failing at Incident Response: Here Are The Top Reasons Why

Discussions about security breaches often focus on the planning elements, but simply talking about planning is not enough. Comprehensive plans need to be drawn up, fully executed and regularly reviewed in order to be successful. This is the only way to potentially contain the breach and limit the impact it could have on the organization. Properly planning and implementing is the difference between success and failure for companies when it comes to security and incident response.

As the ever-evolving cyber security landscape poses new challenges, companies are pushed even more to fight back the growing number and even more sophisticated levels of cyber attacks. Organizations across all sectors and industries are potential targets and could become victims at any time. With attacks escalating in all areas, whether via phishing or malware, for example, security operations teams need to be prepared to respond to existing and new types and strains of threats, in order to fully defend and protect their company assets and networks.

Along with prevention becoming increasingly difficult for security teams, some organizations also tend to have a weakness when it comes to incident response. Below outlines some of the main reasons why this failure is happening today and if this a true representation of your organization, it is important for action to be taken in order to improve it.

Inadequate Resources

With the number of sophisticated cyber threats in the past several years growing at a phenomenal rate, the security industry has been facing an explosion of security tools available in the market. Many of these though have adversely resulted in creating more tasks for security teams and analysts in terms of monitoring, correlating, and responding to alerts. Analysts are pushed to work on multiple platforms and generate data from every single source manually, while afterwards then needing to enrich and correlate that data which can take many hours or even days.

Security budgets are often limited, and while it is often easier to gain support and approval for additional security apps and tools than it is for additional staff members, this means that many security teams often are forced to search innovative ways to perform many different tasks with extremely limited personnel resources.

Another important point to note is that with increased market competition for experienced and skilled analysts, companies are often forced to choose between hiring one highly skilled staff member versus a couple of less experienced, junior level ones.

Task Overload

Over the years, organizations have witnessed an increasing number of security tools to fight back the growing number of security threats. But even though these tools manage alerts and correlate through security information and management system, security teams are still overwhelmed by the volume of alerts being generated and in many instances are not physically able to respond to them all.

Every single alert must be verified manually and triaged by an analyst. Then, if the alert is determined to be valid, additional manual research and enrichment must take place before any other action to address the threat. While all of these processes take place, other potential alerts wait unresolved in a queue, while new alerts keep being added. The problem is, any one of these alerts may be an opportunity window for an attacker while they wait to be addressed.

Risk of Losing Skilled Analysts

Security processes are performed manually and are quite complex in nature, therefore training new staff members takes time. Organizations still rely on the most experienced analysts when it comes to decision making, based on their knowledge and work experience in the company, even with documented procedures in place. This is commonly referred to as tribal knowledge, and the more manual the processes are, the longer the knowledge transfer takes. Moreover, highly qualified analysts are considered a real treasure for the company, and every time a company loses such staff member, part of the tribal knowledge is also lost, and the entire incident response process suffers a tremendous loss. Even though companies make efforts to keep at least one skilled analyst who is able to teach other staff members the skills they have, they aren’t always successful in that.

Failure to Manage Phases

Security teams work with metrics that could be highly subjective and abstract, compared to other departments which often work with proven processes for measuring the effectiveness or ineffectiveness of a program. This is largely due to the fact that conservative approaches and methods for measuring ROI aren’t applicable, nor appropriate when it comes to security projects, and might give misleading results. Proper measurement techniques are of utmost importance when it comes to measuring the effectiveness and efficiency of a security program, therefore it is necessary to come up with a measurement process customized according to the needs of the company.

Another important issue that should be mentioned here is the one concerning the management of different steps of the incident response process. Security incidents are very dynamic processes that involve different phases, and the inability to manage these steps could result in great losses and damages to the company. For the best results, companies should focus on implementing documented and repeatable processes that have been tested and well understood.

In order to resolve these issues, organizations should consider the following best practices.

Orchestration

The coordination of security data sources and security tools in a single seamless process is referred to as orchestration. Technology integrations are most often used to support the orchestration process. APIs, software development kits, or direct database connections are just a few of the numerous methods that can be used to integrate technologies such as endpoint detection and response, threat intelligence, network detection, and infrastructure, IT service and account management.

Automation

Orchestration and automation might be related, but their end goals are completely different. Orchestration aims to improve efficiency by increased coordination and decreased context switch among tools for a faster and better-informed decision-making, while automation aims to reduce the time these processes take and make them repeatable by applying machine learning to respective tasks. Ideally, automation increases the efficiency of orchestrated processes.

Strategic and Tactical Measurement

Information in favor of tactical decisions usually consists of incident data for analysts and managers, which might consist of indicators of compromise assets, process status, and threat intelligence. This information improves decision-making from incident triage and investigation, through containment and eradication.

On the other hand, strategic information is aimed at executives and managers, and it’s used for high-level decision making. This information might comprise statistics and incident trends, threat intelligence and incident correlation. Advanced security programs might also use strategic information to enable proactive threat hunting.

If these challenges sound familiar within your security operations team, find out how DFLabs’ Security Orchestration, Automation and Response solution can help to address these to improve your overall incident response.

Key Elements of Every Successful Incident Response Program

Nowadays, businesses face the fact that cyber attacks are part of the overall picture, and will happen at any given moment. Nobody is in doubt about this, and the question has shifted from ‘if they happen’, to ‘when they happen’. Along with this, cybercriminals have become much more sophisticated, raising the costs of fighting back on all industry levels.

Managing cyber security issues can pose a real challenge within a company. The new and complex networks, business requirements for innovation and new ways of delivery of services require new methods and approaches to the way security is handled. Traditional security management methods no longer work. Today, cyber security management should aim towards efficiency when it comes to possible future threats.

Serious data breaches can cost a company hundreds of millions of dollars. Often, what makes a breach serious is the effectiveness and speed of the incident response process.

This being said, creating an incident response program is of utmost importance. It has to excel in the following areas: visibility, incident management, workflows, threat intelligence, and collaboration/information-sharing. Below we’ll take a closer look at each of these areas and discover their importance from a systems level perspective.

Visibility

Having in mind the number of security products in an average company, visibility should be the core of any incident response system – this means aggregating data feeds from commercial and open-source products. When setting up an incident response system, specialists should consider platforms that offer support for security products out of the box. Although not all of them support everything by default, the one you choose should be flexible to add bi-directional integrations with security products not supported by default. But even though bi-directional integrations are important for the support of full automation and orchestration, these are not always necessary for each technology. For example, with simple detection and alerting technologies, unidirectional event forwarding integration will do the work. Just check that common methods of event forwarding and data transfer (such as syslog, database connections, APIs, email and online forms) are supported.

Incident Management

A well-structured incident response program should enable orchestration and automation of the security products that the organization uses. Above everything else, it should include the ability to manage the entire incident response process, starting from the basics, such as tracking cases, recording actions during the incident, as well as reporting on critical metrics and KPIs.

Furthermore, a more advanced incident response system should provide the following:

  • Phase and objective tracking
  • Detailed task tracking, including assignment, time spent and status
  • Asset management — tracking all physical and virtual assets involved in the incident
  • Evidence and chain of custody management
  • Indicator and sample tracking, correlation and sharing
  • Document and report management
  • Time and monetary effort tracking
Process Workflows

One of the key capabilities that should part of the incident response system is the automation and orchestration workflows. The result is more efficient processes and heavy reduction in repetitive tasks for analysts.

These are the core methods for a codification of process workflows: linear-style playbooks or flow-controlled workflows or runbooks.

Both methods have advantages and disadvantages, and as each is suitable for different use cases, they both should be supported by the incident response system. In both cases, workflows should be flexible and support almost any process, and should support the use of built-in and custom integrations, and creating manual tasks that should be completed by an analyst.

Threat Intelligence

The capability of incorporating threat intelligence feeds is one of the most basic requirements for an incident response system. Moreover, with the ability to correlate threat intelligence, it’s easier to discover attack patterns, vulnerabilities, and other current risks without manual analysis. Adding the automated correlation also helps identify whether an ongoing incident shares common factors with any previous incidents. But even though automated correlation is crucial for analysts to make decisions, visual correlation is also important. Visualizations of threat intelligence and correlated events are particularly useful for threat hunting and detecting attacks/patterns that could not have been detected using other methods.

Collaboration and Information-Sharing

Incident response is never a one-person show. Generally, it requires the participation of many people, and often of multiple teams. To be highly effective in such an environment, an incident response system should support seamless collaboration and information-sharing between all stakeholders and team members.

This means that authorized staff members should have access to the status of the incident and other generated information, including team members actions. Also, all staff members should communicate in a secure fashion, using out-of-band communications mechanism.

Furthermore, information-sharing and cooperation should be a regular practice with external entities, especially with law-enforcement agencies. Information-sharing, such as threat intelligence reports, is vital in the fight against cybercrime.

Conclusion

Most companies will experience data breach sooner or later, and how they respond will affect the future of the business. These essential components will help ensure that an organization’s incident response program can detect, contain and mitigate a breach before it can reach more serious status.