Contain Threats and Stop Data Exfiltration with DFLabs and McAfee Web Gateway

Security teams are inundated with a constant barrage of alerts. Depending on the severity of each alert, it is often minutes to hours before an analyst can properly triage and investigate the alert. The manual triage and investigation process adds additional time, as analysts must determine the validity of the alert and gather additional information. While these manual processes are occurring, the potential attacker has been hard at work; likely using scripted or automated processes to probe the network, pivot to other hosts and potential begin exfiltrating data. By the time the security team has verified the threat and begun blocking the attacker, the damage is often already done.

So, how can security operations temporarily contain a possible threat and/or permanently block a known threat? This blog will explain how by utilizing the IncMan SOAR technology from DFLabs with its integration with McAfee Web Gateway, including a use case example in action.

DFLabs and McAfee Web Gateway Integration

McAfee Web Gateway delivers comprehensive security for all aspects of web traffic in one high-performance appliance software architecture. For user-initiated web requests, McAfee Web Gateway first enforces an organization’s internet use policy. For all allowed traffic, it then uses local and global techniques to analyze the nature and intent of all content and active code, providing immediate protection. McAfee Web Gateway can examine the secure sockets layer (SSL) traffic to provide in-depth protection against malicious code or control applications.

Attackers are scripting and automating their attacks, meaning that additional infections and data exfiltration can occur in mere seconds. Security teams must find new ways to keep pace with attackers in order to minimize the impact from even a moderately skilled threat. Utilizing DFLabs IncMan’s integration with McAfee Web Gateway, IncMan’s R3 Rapid Response Runbooks automate and orchestrate the response to newly detected threats on the network, enabling organizations to immediately take containment actions on verified malicious IPs and ports, as well as temporarily preventing additional damage while further investigation is performed on suspicious IP addresses and ports.

Use Case in Action

McAfee Web Gateway has generated an alert based on potentially malicious traffic originating from a host inside the network to an unknown host on the Internet. Based on a predefined Incident Template, IncMan has automatically generated an Incident and notified the Security Operations Team. As part of the Incident Template, the following R3 Runbook has been automatically added to the Incident and executed.

 

Data exfiltration can occur in mere seconds. By the time a security team has validated the threat and blocked the malicious traffic, it is often too late.  DFLabs integration with McAfee Web Gateway allows organizations to automatically contain the threat and stop the bleeding until further action can be taken.

The Runbook begins by performing several basic Enrichment actions, such as gathering WHOIS and reverse DNS information on the destination IP address.  Following these basic Enrichment actions, the Runbook continues by querying two separate threat reputation services for the destination IP address. If either threat reputation service returns threat data above a certain user-defined threshold the Runbook will continue along a path which takes additional action. Otherwise, the Runbook will record all previously gathered data, then end.

If either threat reputation service has deemed the destination IP address to be potentially malicious, the Runbook will continue by using an additional Enrichment action to query the organization’s IT asset inventory.  Although this information will not be utilized by the automated Runbook, it will play an important role in the process shortly.

Next, the Runbook will query a database of known-good hosts for the destination IP address.  In this use case, it is assumed that this external database has been preconfigured by the organization and contains a list of all known-good, whitelisted, external hosts by IP address, hostname and domain. If the destination IP address does not exist in the known-good hosts’ database, the security analyst will be prompted with a User Choice decision. This optional special condition within IncMan will pause the automatic execution of the Runbook, allow the security analyst to review the previously gathered Enrichment information and allow the security analyst to make a conditional flow decision.  In this case, the User Choice decision asks the security analyst if they wish to block the destination IP address. If the analyst chooses to block the destination IP address, a Containment action will utilize McAfee Web Gateway to block the IP until further investigation and remediation can be conducted.

If you want to learn more about how to contain threats, block malicious traffic and halt data exfiltration utilizing Security Orchestration, Automation and Response (SOAR) technology, get in touch with one of the team today to request your live one to one demo.

5 Common Security Orchestration, Automation and Response (SOAR) Use Cases

When it comes to Security Orchestration, Automation and Response (SOAR), the use cases will vary depending on a number of factors, such as the enterprise-specific internal environment, the industry or vertical the enterprises serve and even the legal and regulatory compliance that need to be met.

In this blog post we will cover five of the most common use cases for a Security Orchestration Automation and Response (SOAR) solution and how by utilizing this technology, a security alert and potential incident can be quickly detected, responded to and resolved without having a major impact on the organization.

It is key to point out that a use case is only limited by the creativity of the organization itself. A Security Orchestration Automation and Response SOAR platform, such as IncMan SOAR from DFLabs, should be able to cater for any scenario and use case that is required.

Phishing

Phishing emails have become one of the most critical issues faced by organizations over the past several years.  Some of the most recent high-profile data breaches have resulted from carefully crafted phishing emails. Security Orchestration, Automation and Response (SOAR) is perfectly positioned to enable automatic triage and examination of suspected phishing emails by extracting artifacts from the email, then performing additional enrichment on these artifacts and if necessary, containing the malicious email and any malicious payloads.

Suspicious emails may be received via any one of the numerous email scanning solutions available today, or via a monitored email address provided to end users to submit suspicious emails to.  Once the email is received, SOAR can extract artifacts, such as header information, email addresses, URLs and even attachments. What happens next will largely depend on the organizations’ individual technology integrations. The extracted information may be submitted to various threat reputation and intelligence services, SIEM, EDR or network appliance logs may be queried, and attachments may be detonated in a sandbox. Once the available information has been enriched, if determined to be malicious, automated or semi-automated containment actions may be taken, such as quarantining or deleting the phishing email, searching for and deleting other instance of the phishing email in other user’s accounts, blocking IP addresses or URLs, banning executables from running or quarantining the user’s workstation.

Regardless of the integrations used, utilizing SOAR to examine and respond to phishing emails can reduce the time to investigate these pervasive threats from hours to minutes, automatically containing the attack and minimizing risk to the organization.

Malicious Network Traffic

The influx of detection technologies means that organizations are facing a constant barrage of alerts. Many of these alerts are generated due to traffic that one detection technology or another has deemed to be potentially malicious. This is usually based on some type of threat indicator, which may or may not be reliable. It is often left up to the organization to further triage and investigate each of these alerts to determine if they are a false positive or an actual potential security event.

Alerts regarding malicious traffic may be received by a SOAR directly, or after being ingested and forwarded by a SIEM. In either case, the advantage of using a SOAR to automate and orchestrate actions surrounding these types of events comes from the automatic enrichment, as well as potential containment of the detected indicators. Under normal circumstances, analysts would use whatever data enrichment tools are available, such as threat intelligence, reputation services, IT asset inventories and tools such as nslookup and whois.  Analysts would then determine if the indicators appeared to be malicious, at which point containment and further investigation would begin. Using SOAR technology, it is simple to codify a process such as this into an automated workflow, automatically performing data enrichment as soon as the alert is received. A SOAR solution can also automate the process of searching for additional instances of the same indicator across the organization, alerting analysts to any additionally detected occurrences. Automated or semi-automated containment is also possible; for example, blocking an IP address or URL via the firewall or proxy, or isolating a host pending further investigation.

Alerts regarding potentially malicious traffic are common-place and often sit in the queue for some time before they are investigated. While most are false positives or low priority, any one of these could be the only indicator of a potentially serious data breach. Security Orchestration, Automation and Response (SOAR) Technology allows immediate triage and response to each of these alerts almost instantaneously, automating the mundane, repeatable processes while allowing analysts to focus on the most significant alerts.

Vulnerability Management

Security Orchestration Automation and Response was not intended to be a vulnerability management platform and will never replace the robust vulnerability management systems available today. However, there are some aspects of a good vulnerability management program that a SOAR platform can streamline. In larger enterprises, vulnerability management is often a task performed outside the security team. This can lead to potential risk as the security team may not be aware of vulnerabilities that exist within the infrastructure.

A SOAR solution can be used to ensure that the security team is made aware of any new vulnerabilities within the organization. This allows the security team to proactively examine the vulnerable host, when appropriate, to ensure that there is no evidence of exploitation, place any appropriate additional safeguards in place, and subject the host to increased monitoring until the vulnerability has been mitigated.

Beyond notifying the security team, a Security Orchestration, Automation and Response SOAR solution may also be used to further enrich vulnerability and host information. For example, a SOAR solution could be used to query a database of vulnerabilities to gather additional information on the vulnerability, query Active Directory or CMDB for asset information, or query a SIEM or EDR for events. Based on vulnerability, host or event information, the case could be automatically upgraded or reassigned, or the host could even be temporarily isolated until appropriate mitigation tasks could be performed.

While suitable testing and deployment of patches are critical in an enterprise environment, existing vulnerabilities present an ongoing risk to the organization. It is crucial that the security team are aware of these risks and take the proper steps to ensure that the vulnerability has not and will not be exploited until it can be properly addressed. A Security Orchestration, Automation and Response (SOAR) solution can be utilized to ensure that the security team remains informed of all current vulnerabilities and can efficiently evaluate the possible risk of each vulnerability in order to take proper risk mitigation actions.

Security Orchestration Automation and Response (SOAR) for MSSPs

Managed Security Service Providers (MSSPs) face many of the same issues as Computer Security Incident Response Teams (CSIRTs) and Security Operations Centers (SOCs), but on a much larger scale.  In addition to these shared challenges, MSSPs also face some unique issues which the SOAR technology can address. MSSPs must work within the confines of strict service level agreements (SLAs). Failing to meet these SLAs could result in loss of business, loss of reputation and even the potential for legal action. Automating and orchestrating actions with a Security Orchestration, Automation and Response SOAR solution allows MSSPs to work more efficiently, ensuring that all SLAs are met. In addition, MSSPs are constantly under pressure to prove to customers that these SLAs are being met, that they are taking appropriate, timely actions and that they are continuing to provide value to their customers. The advanced metrics and audit logs of a SOAR addresses these needs by providing a robust set of metrics suitable for both analysts and executives alike.

MSSPs must also find a method to manage each customers data securely and in a segregated manner. At the same time, MSSPs must also ensure that each customer is provided access to their data to ensure transparency and to allow seamless teamwork between the MSSP and the customer’s internal teams. Security Orchestration, Automation and Response (SOAR) accomplishes these tasks by providing individual tenants for each customer, physically segregating each customers data to ensure confidentiality while allowing the MSSP access across customer tenants for ease of use.  

Case Management

Although not strictly an orchestration and automation function, case management is an important part of the incident response process and is another function that SOAR can help streamline. Many organizations struggle with managing the vast amounts of disparate information that is gathered during a security incident.  Spreadsheets and shared documents are simply not sufficient for managing a complex cyber incident.

Not only does SOAR maintain all information and enriched data gathered from automated and orchestrated activities, it also maintains a detailed audit log of all actions taken during the response. A full-featured SOAR solution should also allow for detailed task management, allowing incident managers to create, assign and monitor tasks assigned to all analysts taking part in the response. In addition, a full-featured SOAR should also allow users to track assets involved in the incident and maintain a detailed chain of custody for all physical and logical evidence.

A Security Orchestration, Automation and Response (SOAR) with full case management functionality will help ensure the smooth and efficient handling of an incident from identification through remediation, providing responders will the information they need right at their fingertips and allowing them to focus on the task at hand.

If you would like to see a SOAR solution in action and discuss your specific use cases, request a live demo today.

Five Critical Components of SOAR Technology

In our previous two blogs, we looked at some of the most common problems a Security Orchestration, Automation and Response (SOAR) Technology is designed to solve and the three pillars of a SOAR solution. We will round out this three-part series by taking a more detailed look at some of the most critical SOAR Technology components any SOAR solution should possess. While some of these components may be more critical than others to individual organizations, each plays an important role in the overall function of a SOAR solution and should be considered when evaluating different platforms.

1. Customizability and Flexibility

No two security programs will be alike; this is especially true when you cross vertical lines. For a SOAR solution to be effective, it should be capable of being the single tool on top of the security stack. A SOAR solution should be able to be implemented in a manner that is optimized for CSIRT teams, as well as SOCs, MSSPs and security teams. Data input from a multitude of sources, including machine to machine, email, user submissions and manual input should be supported. The importance of security metrics means that customers should be able to customize not only the values available in the solution but also what attributes are tracked as well.

The number of security solutions, commercial, open source, and developed in-house means that any viable SOAR solution must be flexible enough to support a multitude of security products. Any SOAR solution will support many security products out of the box, however, the likelihood that all the organization’s security products will be supported by default is low. For that reason, it is crucial that a SOAR solution has a flexible option in place that allows customers to easily create bi-directional integrations with security products which are not supported by default.  

2. Process Workflows

One of the key benefits of a SOAR solution is being able to automate and orchestrate process workflows to achieve force multiplication and reduce the burden of repetitive tasks on analysts. To achieve these benefits, a SOAR solution must be able to support flexible methods for implementing process workflows. The implementation of these workflows must be flexible enough to support almost any process which may need to be codified within the solution. Workflows should support the use of both built-in and custom integrations, as well as the creation of manual tasks to be completed by an analyst. Flow controlled workflows should support multiple types of flow control mechanisms, including those which allow for an analyst to make a manual decision before the workflow continues.  

3. Incident Management

Incident response is a complex process. Orchestration and automation of security products provide obvious value to any security program, but to maximize the time and monetary investment in a SOAR solution, a comprehensive SOAR solution should include additional features to manage the entire incident response lifecycle. This should include basic case management functionality, such as tracking cases, recording actions taken during the incident and providing reporting on critical metrics and KPIs. This should also include other ancillary functions such as detailed task tracking, evidence, and chain of custody management, asset management, and report management.  

4. Threat Intelligence

Actionable threat intelligence is a critical component in effective and efficient incident response. While simple threat intelligence feeds still provide some value and should be supported by a SOAR solution, to be truly effective in today’s threat landscape, threat intelligence must go above and beyond simple feeds. Because a SOAR solution has access to not only the indicators but also the rest of the incident information which can provide the additional context, it is in a unique position to gather actionable threat intelligence.

A proactive security program requires threat intelligence to be properly correlated to discover attack patterns, potential vulnerabilities and other ongoing risks to the organization. This correlation should be done automatically and it should be immediately clear if an ongoing incident may share common factors with any previous incidents. Because threat intelligence can consist of a vast amount of data, visual correlation is also an important factor when assessing threat intelligence capabilities.

5. Collaboration and Information Sharing

Incident response is not one player sport. Response to a security incident will likely include multiple individuals and potentially multiple teams and even organizations. To be effective in a team environment, a SOAR solution must support seamless collaboration and information sharing among team members in a controlled manner.  

Collaboration and information sharing must also be possible outside of the organization itself.  This is especially true in the context of threat intelligence. Open sharing of threat intelligence, when possible, it a critical tool in fighting cybercrime. There are numerous avenues available to share threat intelligence, open, closed and industry-specific. The majority of these threat intelligence sharing programs utilize one of the open standards for threat intelligence, such as STIX/TAXII, OpenIOC or MISP, and each of these standards should be supported by a SOAR solution.

For more information on any of these topics covered in this three-part series, please check out our whitepaper “Security Orchestration, Automation, and Response (SOAR) Technology” here.

Leveraging SOAR Technology to Facilitate Knowledge Transfer in Security Operations

Earlier this year I was talking to a colleague about the state of SOC operations and how I was looking forward to going to the SANS Security Operations Summit in New Orleans in July. The folks who attend SANS events are at the top of their game and let’s be honest, SANS provides some of the best training in our industry, so what’s not to love?

The conversation quickly turned to how to provide better scalability within SOC operations. Given that our teams are confronted with an increased number of alerts coming from more sophisticated actors on a daily basis, how do we keep up? We spoke about the need for better security automation to enrich the information available at the onset of an incident and how malware has been automating since the Morris worm 30 years ago.

At one point she asked me how best we can handle the transfer of incident handling “tribal knowledge” from the senior Incident Response personnel to the junior members, given the daily workload they carry. I thought about it for a moment and threw out that perhaps increased spending for machine learning or AI could help bridge the knowledge gap. She then asked, “Couldn’t we take that money and invest in knowledge transfer within the team instead?”. That simple and simultaneously complex question got me to thinking about how we can better utilize existing resources to provide that knowledge transfer in an environment as dynamic and rapidly changing as an Incident Response organization.

I thought this topic was interesting enough to make it my focus for my upcoming speaking engagement at SANS.

As we already know an increased workload coupled with an industry-wide shortage of skilled responders is heavily impacting operational performance in Security Operations Centers (SOC) globally and an integral part of the solution is formulating a methodology to ensure that crucial knowledge is retained and transferred between incident responders. By utilizing Security Orchestration, Automation and Response (SOAR) technology, security teams can combine traditional methods of knowledge transfer with more modern techniques and technologies.

Join me at the SANS Security Operations Summit on July 30, 2018 at Noon for an informal “Lunch and Learn” session to discuss how we ensure that the Incident Response knowledge possessed by our senior responders can be consistently and accurately passed along to the more junior team members while simultaneously contributing to the Incident Response process. I look forward to meeting you there.

If you are not attending the summit, don’t worry, you can visit our website to find out more information about the benefits of utilizing a SOAR solution with DFLabs’ IncMan SOAR platform.  Alternatively, if you would like to have a more in-depth discussion, you can arrange a demo to see IncMan live in action.

SOAR Technology – What Problems Are We Trying To Solve?


Increasing Adoption of SOAR Solutions

Over the past several years, Security Orchestration, Automation and Response (SOAR) has gone from being viewed as a niche product to one gaining traction across almost all industry verticals. Today, more and more private organizations, MSSPs and governments are turning to SOAR Technology to address previously unsolved problems in their security programs. SOAR is about taking action: “Automate. Orchestrate. Measure”. Organizations are implementing a SOAR solution to improve their incident response efficiency and effectiveness by orchestrating and automating their security operations processes. Gartner estimates that by 2019, 30% of mid to large-sized enterprises will leverage a SOAR technology, up from an estimated 5% in 2015.

In this three-part blog, we will discuss the key drivers for SOAR adoption and what problems a SOAR solution can help solve.  In the next blog, the second part of this three-part blog, we will discuss the three pillars of Security Orchestration, Automation and Response (SOAR). Finally, we will round out the series by discussing the critical components and functionality that a SOAR solution should contain.

Five Key Problems SOAR Technology Helps to Solve

Like many new product categories, Security Orchestration, Automation and Response (SOAR) technology was born from problems without solutions (or perhaps more accurately, problems which had grown beyond the point that they could be adequately solved with existing solutions). To define the product category more accurately, it is crucial to first understand what problems drove its creation. There are five key problems the SOAR market space has evolved to address.

  • Increased workload combined with budget constraints and competition for skilled analysts means that organizations are being forced to do more with less

As the number and sophistication of threats has grown over the past decade, there has been an explosion in the number of security applications in the enterprise. Security analysts are being forced to work within multiple platforms, manually gathering desperate data from each source, then manually enriching and correlating that data. Although it may not be as difficult to find security analysts as it once was, a truly skilled security analyst is still somewhat of a rare breed.  Intense competition for these skill analysts means that organizations must often choose between hiring one highly skilled analyst, or several more junior analysts.

  • Valuable analyst time is being consumed sorting through a plethora of alerts and performing mundane tasks to triage and determine the veracity of the alerts

Even when alerts are centrally managed and correlated through a SIEM, the number of alerts is often overwhelming for security teams.  Each one of these alerts must be manually verified and triaged by an analyst.  Alerts which are determined to be valid then require additional manual research and enrichment before any real action can be taken to address the potential threat. While these manual processes are taking place, other alerts sit unresolved in the queue and additional alerts continue to roll in.

  • Security incidents are becoming more costly, meaning that organizations must find new ways to further reduce the mean time to detection and the mean time to resolution

The cost of the average incident has increased steadily year on year. The immediate cost of an incident due to lost sales, employee time spent, consulting hours, legal fees and lawsuits is relatively easy to quantify. The financial loss due to reputational damage, however, can be much more difficult to accurately measure. Reducing the time to detect and resolve potential security incidents must be an absolute priority. Each hour that a security incident persists is effectively money out of the door.

  • Tribal knowledge is inherently difficult to codify, and often leaves the organization with personnel changes

Employee retention is an issue faced by almost every security team. Highly skilled analysts are an extremely valuable resource for which competition is always high. Each time an organization loses a seasoned analyst, some tribal knowledge is lost with them and they are replaced with an analyst who, even if they possess the same technical skills, will lack this tribal knowledge for at least a period of time. Training new analysts takes time, especially when processes are manual and complex.  Documenting security processes is a complex, but critical task for all security teams.

  • Security operations are inherently difficult to measure and manage effectively

Unlike other business units which may have more concrete methods for measuring the success or failure of a program, security metrics are often much more abstract and subjective. Traditional approaches to measuring return on investment are often not appropriate for security projects and can lead to inaccurate or misleading results. Properly measuring the effectiveness and efficiency of a security product or program requires a measurement process specially designed to meet these unique requirements.

About DFLabs IncMan SOAR

DFLabs is an award-winning and recognized global leader in Security Orchestration, Automation and Response (SOAR) technology. Its pioneering purpose-built platform, IncMan SOAR, enables SOCs, CSIRTs, and MSSPs to automate, orchestrate and measure security operations and incident response processes and tasks. IncMan SOAR drives intelligence-driven command and control of security operations, by orchestrating the full incident response and investigation lifecycle and empowers security analysts, forensic investigators and incident responders to respond to, track, predict and visualize cyber security incidents.  As its flagship product, IncMan SOAR has been adopted by Fortune 500 and Global 2000 organizations worldwide.

Schedule a live demo with one of our cyber security specialists here and see DFLabs IncMan SOAR platform in action. For more information on any of these topics, please check out our new whitepaper titled “Security Orchestration, Automation, and Response (SOAR) Technology” here.

Stay tuned for our next blog in this series, where we will discuss the three pillars of SOAR technology.  

Understanding the Noise Using Security Orchestration, Automation and Response

“Noise” is a prevalent term in the cyber security industry. Here at DFLabs – Security Orchestration, Automation and Response Platform, we consistently receive feedback from vendor partners and clients that one of the major issues they face on daily basis is the ability to sift through the noise in order to understand and differentiate an actual critical problem from a lost cause.

What is “noise”?

Noise is a vast amount of information passed from security products that can have little or no meaning to the person receiving the information. Typically, lots of products are not tuned or adapted for certain environments and therefore would present more information than needed or required.

Noise is a problem to all of us in the cyber security industry, as there are meanings within these messages that are on many occasions simply ignored or passed over for higher priorities. For example, having policies and procedures that are incorrectly identified or adapted, or a product is not properly aligned within the network topology.

There is not one security product that can deal with every attack vector that organizations experience today. What’s more disturbing about this paradigm is that most of the tools and technologies within the security infrastructure do not talk to each other natively, yet all them have intelligence data that can overlay to enrich security operations and incident response teams.

Understanding the Noise Using Security Orchestration, Automation and Response

Cyber incident investigative teams spend a vast number of hours carrying out simple administrative tasks that could easily be relieved by introducing an effective security orchestration, automation and response  (SOAR) solution. Given the sheer volume of alerts, we can see from SIEM products on a day to day basis, a Security Orchestration Automation and Response SOAR tool can be used in conjunction to execute most, if not all of the human to machine actions, following best practice per type of incident and company guidelines, all through automated playbooks.

Re-thinking what information is being presented and how we deal with it is the biggest question. There are several ways to manage this:

  • Fully automating the noise worthy tasks.
    If these are consistently coming into your Security Operations Center (SOC) causing you to spend more time on administration than investigation, it may be prudent to schedule the tasks in this manner.
  • Semi-automation of tasks can give your SOC teams more control over how to deal with huge numbers.
    Automating 95% of these tasks and then having an analyst to provide the last sign off via manual look over, can heavily reduce time if your organization is against fully automating the process.
  • Leverage all of your existing products to provide better insight into the incident.
    For example, leverage an existing Active Directory to lock out or suspend a user account if they log in outside of normal business hours. Additionally, it’s possible to sandbox and snapshot that machine to understand what is happening. A key consideration here is to make sure not to disrupt work at every opportunity. It really is a balancing act, however, depending on their privilege you may want to act faster for some users compared to others depending on their role and responsibilities.

During the second half of 2018, the readiness and capability to respond to a variety of cyber incidents will continue to be at the top of every C-level agenda. By leveraging the security orchestration automation and response capabilities offered by DFLabs’ IncMan SOAR platform, stakeholders can provide 360-degree visibility during each stage of the incident response lifecycle. This provides not only consistency across investigations for personnel but encourages the implementation of Supervised Active Intelligence across the entire incident response spectrum.

At DFLabs we showcase our capacity to reduce the investigative time and incident dwell time, all while increasing incident handling consistency and reducing liability. Arming your SOC teams with information prior to the start of their incident investigation will help to drive focus purely on the incidents that need attention rather than the noise.

Please contact us to discuss how we can work together to grow your incident response capabilities or schedule a demonstration of how we can utilize what you already have and make it more effective and efficient.

Transitioning Your SOC Analysts from Data Gatherers to Threat Hunters

Threat hunting is defined as an iterative and focused approach to searching, understanding and identifying internal adversaries that are found in the defender’s network. It’s been shown that incident response automation tools can provide Security Operations Center (SOC) team members with additional time that can be leveraged in a more focused, threat hunting role within the SOC environment.

The SOC staff members should have some understanding of how they can use this additional time provided by incident response automation to enable them to hunt for threats, rather than spending valuable time and resources gathering threat information which could otherwise be done in an automated fashion.  It’s long been established as we make the migration from threat prevention to threat discovery that malicious actors and processes are frequently well-hidden within the organizations infrastructure and in order to effectively locate and investigate them we must start by asking the 5 W’s, who, what where, when, why and perhaps most importantly, how.

SOC team members must first understand what threat hunting is to be truly effective. The staff members should channel their question on the three tenets that make up the threat triangle; capability, intent, and the opportunity. By focusing on these three tenets, threat hunters can leverage orchestration to accomplish not only the system monitoring but the automated data gathering to support this expanded role without adding additional infrastructure. Additionally, team members must understand that the threats can be human and not just, for example, malware that is directed at them. This, coupled with an understanding of the affected systems function, will help provide the insight into possible contributing factors to the incident.

As the level of automation scales upward, we’ve seen a corresponding scaling of the transition from simple incident data gatherers to data hunters. Additional time and resources will become available to teams that leverage incident automation, permitting them to forego the traditional gatherer role and begin to embrace a more proactive hunter role. The good news is both of these roles can be supported within the SOC and also within the same Security Orchestration, Automation and Response (SOAR) platform. IncMan SOAR from DFLabs provides the necessary combination of force multiplication and machine learning to ensure that not only are incidents capable of being prioritized automatically, but the necessary actions for successful resolution are available at incident inception.

If you would like to see how a SOAR platform can give your incident response team the necessary tools to make the migration from simple data gatherers to threat hunters, reach out to us for a free, no obligation demo.

Attackers Are Embracing Automation, Why Aren’t We?

Attackers have long embraced the concept of automation. Although attackers were likely automating their attacks prior to the Morris worm, in 1988 the Morris worm brought attack automation to the attention of the security industry when it brought down a large portion of the Internet. Since then, the sophistication of attack automation has increased exponentially. Frameworks such as the Metasploit Framework allow attackers to script the entire attack process, from information gathering to exploitation, to post-exploitation and data exfiltration. This sort of automation has allowed the attackers to exploit systems with much greater efficiency.

According to the 2017 SANS Incident Response Survey, almost 50% of organizations who responded reported average detection to containment times of greater than 24 hours. Put another way, almost half of these organizations are allowing attackers to remain in their networks for more than a day after they have first been detected, and that does not even include the time that elapses from compromise to detection. Even an unskilled attacker can cause catastrophic damage to an organization with 24 hours of uninterrupted exploitation time. A skilled attacker automating network reconnaissance, establishing persistence on additional hosts and performing data exfiltration, can cause damage in 24 hours that it will take an organization months to fully discover and recover from.

Three decades later, why have we as a security industry been so slow to adopt the same methods of automation? Sure, we have long automated portions of the incident response process, such as automatically removing detected malicious files or automatically quarantining suspicious emails, but we have yet to achieve the sort of automation efficiency that has been being used by attackers for decades. Even for commodity attacks, this level of automation is often ineffective as attackers have adapted to include multiple mechanisms to maintain persistence when a single file or registry key is deleted. To a skilled and determined attacker, this level of automated prevention is trivial to bypass in most instances.

Attackers have learned that automating large portions of the steps along the Cyber Kill Chain allow them to more quickly infiltrate a single target, as well as more efficiently attack multiple targets. Why then has the security industry yet to follow suit and automate larger portions of the incident response lifecycle? The two most commonly encounter objections are that is it not possible or too risky to automate larger portions of the incident response lifecycle.  The answer to the first objection is easy; it is certainly possible. The emergence of Security Orchestration, Automation and Response (SOAR) platforms, such as DFLabs IncMan, have made automation of a large part of the incident response lifecycle possible.

The answer to the second objection to automation is a little more complicated. There is certainly reason for a cautious approach to automating more of the incident response lifecycle, especially when we consider automating containment, eradication, and recovery.  After all, there is little risk to the attackers when their automation fails; they may be detected or they may not successfully exploit the target. In either case, the attacker can simply try another method, or move on to the next target.  The potential risk is much greater for organizations automating the incident response process. Automatically containing a business-critical system because of a malware detection or automatically blocking business-critical IP address because it was erroneously flagged as malicious, could cost an organization millions of dollars.

While these risks can never be completely eliminated, automation processes and technology have reached a level at which failing to embrace greater levels of automation carries with it significantly more risk than implementing automation in a well-planned, controlled manner. Appropriate automation pre-planning, identifying the repeatable processes which can most safely and easily be automated and carry the greatest risk/reward benefit, maximizes the benefit of increased automation. Proper use of both internal and external sources of enrichment information, such as threat intelligence and internal databases, to inform the automation containment decision process can greatly reduce the risk of containment actions which could negatively impact the organization.  In addition, many SOAR platforms have incorporated the ability to include human input during critical decision points in the automation process. For example, IncMan’s Dual-Mode Orchestration allows users to switch between automated actions and human intervention at critical junctures in the response process, allowing the majority of the process to be automated while still permitting human input and reducing the risks posed by pure automation in some critical processes.

Although we are likely still decades away from the proverbial incident response “easy button”, or being able to say “Alexa, remediate that threat”, the current threat landscape is also demanding that we do more with less and respond faster, and that means automation. SOAR platforms are no longer just “nice to have” technologies, they are becoming a requirement for organizations to remain one step ahead of the onslaught of attacks. As an industry, we must continue to learn from our adversaries and continue to embrace increasing levels of automation.

For more information about using automation check out our resources created in conjunction with the SANS Institute, including the white paper entitled “SOC Automation – Deliverance or Disaster”  and webinar “Myths and Best Practices Surrounding SOC Automation”.

Leverage Your Existing SIEM with SOAR Technology

With a vast range of security technologies, tools and platforms now widely available in the market for security teams, it is ever more complex to decide which tools are best to deploy to suitably defend the organization’s infrastructure.

Within security structures of larger organizations, it is common to have a security information and event management (SIEM) tool in place, alongside or sitting on top of several other systems, but how can it benefit from implementing a Security Orchestration, Automation and Response (SOAR) solution on top of its existing SIEM infrastructure to further manage its security operations and incident response processes and tasks?  Let’s find out.

The Differences Between a SIEM and SOAR Solution

In simple terms, a SIEM collates and analyses the information generated from various sources, identifying issues and raising the initial security alerts. Alert triage is then often carried out by security analysts in a very manual and non-methodical way and subject to mistakes and errors due to the sheer volumes and number of repetitive and mundane actions required, often not being able to fulfill all of them. One of the original core drivers for SIEM technology was to ingest and process large volumes of security events; a function which SIEMs continue to excel at today. However, although some advanced SIEMs have incorporated additional features, such as integration with threat intelligence and other third-party solutions, many SIEMs are still largely focused on data ingestion and presentation.

Another fundamental limitation of many SIEM solutions is that the communication between the SIEM and other third-party products is unidirectional.  SIEMs were designed to ingest information, however, support for two-way communication with third-party tools is often limited at best. In most cases, this severely limits a SIEM’s ability to carry out actions beyond the initial alert; this is where a SOAR solution can add significant additional value.

A SOAR solution, on the other hand, is often used in conjunction with a SIEM, however, it is not dependent on having a SIEM in place. A SOAR solution is not intended to be a SIEM replacement, instead, when used in conjunction with a SIEM it is intended to be utilized to help security teams automate and orchestrate actions across their entire portfolio of security products in a bidirectional manner to reduce analyst workload, alert fatigue, time to respond and remediate and reduce overall risk.

Sitting on top of the SIEM, the SOAR solution would orchestrate and automate multiple third-party tools from different vendors, whereas the SIEM would be used to collate and analyze data and generate the alert, which is just the first step of a multistep process. SOAR technology would then be leveraged once the initial security threat had been detected and the security alert generated by the SIEM.

When to Implement a SOAR Solution?

The amount of security events that cybersecurity professionals deal with on a day to day basis can be overwhelming and analysts often have to delve through a deluge of data to find what they are looking for, ultimately preventing them from tackling incidents more efficiently. SIEM tools collect large amounts of information from different areas of the IT framework, but too much information sometimes is just as crippling as not enough information.

A SIEM used in isolation helps to centralize information gathered from various other security tools being used, but it can often lead to an overwhelming amount of information, that then needs to be filtered and correlated to eliminate the false positives to leave only the critical events that need to be acted upon. It can produce a vast quantity of security alerts, leaving security analysts inundated, not knowing which alerts should take priority and be tackled first. This will have a negative impact on the security team, with what is already considered a scarce resource.

Most security teams do not realize the sheer number of alerts that will be received and the resulting alert fatigue until they have deployed a SIEM and a full advanced threat detection architecture. There is a common misconception that a SIEM will reduce the number of incoming alerts by applying correlation rules.  However, this is not always the case and correlation rules may only reduce a small percentage of the total number of alerts.  Most enterprises will see a clear business need for implementing a SOAR solution to help reduce alert fatigue, orchestrate the organization’s different security tools and automate menial tasks.

The Benefits

Integrating a SIEM with a SOAR solution combines the power of each to create a more robust, efficient and responsive security program. Taking advantage of the SIEM’s ability to ingest large volumes of data and generate alerts, the SOAR solution can be layered on top of the SIEM to manage the incident response process to each alert, automating and orchestrating a number of mundane and repetitive tasks that would take many manual man hours to complete.

SOAR solutions such as IncMan from DFLabs support SIEM integrations and present a comprehensive solution for all organizations that are trying to create a successful and affordable security program, by effectively reducing the noise generated by a high number of alerts and sometimes less than reliable threat intelligence. This can ultimately enable security teams to minimize incident resolution time, maximize analyst efficiency and overall increase handled incidents.

The combined power of a SOAR solution working alongside a SIEM is crucial to ensure that alerts do not go untouched or ignored. More importantly, it ensures all alerts are dealt with in a timely manner and are acted upon following a standard set of consistent and repeatable practices and procedures.

Final Thoughts

A SIEM is a crucial tool within any security infrastructure, amongst other tools. However, it is critical to keep in mind what a SIEM is designed to achieve, and what gaps may still exist within the security program. The combination of a SIEM and a SOAR solution can transform the security operations and incident response capability and take it from one level to the next, in an intelligent and predetermined manner, so why wait? To learn more about the topic read our new whitepaper “How to Leverage Your Existing SIEM Tool with SOAR Technology

CISO Challenges and the Best Way to Manage Them

Faced with a growing threat landscape, a shortage of skilled cyber security professionals, and non-technical employees who lack awareness of cyber security best practices, to name a few, CISOs are continuously confronted with a number of existing and new challenges. To mitigate some of these challenges by eliminating security threats and minimizing security gaps, they must make some critical strategic decisions within their organizations.

Even though we are only at the beginning of April, 2018 is already proving to be a year of increasing cyber incidents, with security threats spanning across a range of industry sectors, impacting both the private and public sectors alike. We have seen many data breaches including Uber, Facebook and Experian that have made it clear that no organization, not even the corporate giants, are safe from these cyber threats and attacks.  We are now also seeing newly evolving threats affecting the popular and latest smart devices including products such as Alexa and Goоgle Home. New technology not fully tested, or security vulnerabilities from IoT devices being brought into the workplace, now bring additional concerns for CISOs and their security teams, as they try to proactively defend and protect their corporate networks.

This problem seems quite simple to identify in that corporate policies are not being updated fast enough to keep up with dynamic changes and advancements in technology, as well as to cope with the increasing sophistication of advancing threats, but managing this problem is seemingly more difficult. This generates an additional set of challenges for CISOs to enforce policies that still need to be written, while conquering internal corporate bureaucracy to get them created, modified or updated. This is just one challenge. Let’s now discuss a few more and some suggested actions to manage them.

How CISOs Can Overcome Their Challenges

CISOs in international corporations need to focus on global compliance and regulations to abide with a range of privacy laws, including the upcoming European Union’s General Data Protection Regulation (GDPR). This new regulation due to come into force on May 25th, 2018 has set the stage for protection of consumer data privacy and in time we expect to see other regulations closely follow suite. International companies that hold EU personal identifiable information inside or outside of the EU will need to abide by the regulation and establish a formalized incident response procedure, implement an internal breach notification process, communicate the personal data breach to the data subject without delay, as well as notify the Supervisory Authority within 72 hours, regardless of where the breach occurred. Organizations need to report all breaches and inform their affected customers, or face fines of up to 20 million Euros or four percent of annual turnover (whichever is higher). A new law called the Data Security and Breach Notification Act is also being worked on presently by the U.S. Senate to promote this protection for customers affected.  This new legislation will impose up to a five year prison sentence on any individual that conceals a new data breach, without notifying the customers that had been impacted.

So how can CISOs proactively stay ahead of the growing number of cyber security threats, notify affected customers as soon as possible and respond within 72 hrs of a breach? The key is to carry out security risk assessments, implement the necessary procedures, as well as utilize tools that can help facilitate Security Orchestration, Automation and Response (SOAR), such as the IncMan SOAR platform from DLFabs. IncMan has capabilities to automate and prioritize incident response and related enrichment and containment tasks, distribute appropriate notifications and implement an incident response plan in case of a potential data breach.  IncMan handles different stages of the incident response and breach notification process including providing advanced reporting capabilities with appropriate metrics and the ability to gather or share intelligence with 3rd parties. This timely collection of enriched threat intelligence helps expedite the incident response time and contribute to better management of the corporate landscape.

The Need to Harden New Technology Policies

Endpoint protection has also become a heightened concern for security departments in recent months, with an increasing number of organizations facing multiple ransomware and zero days attacks. New technologies used by employees within the organization, not covered by corporate policies, such as Bring Your Own Device (BYOD) and the Internet of things (IoT) have brought new challenges to the CISOs threat landscape. One example as we mentioned earlier are gadgets such as Alexa or Google Home, where users bring them into the office and connect them to the corporate WIFI or network without prior approval. When connected to the network, they can immediately introduce vulnerabilities and access gaps in the security network that can be easily exploited by hackers.

Devices that are not managed under corporate policies need to be restricted to a guest network that cannot exploit vulnerabilities and should not be allowed to use Wi-Fi Protected Access (WPA).  CISOs need to ensure that stricter corporate policies are implemented to restrict and manage new technologies, as well as utilizing tools such as an Endpoint Protection Product (EPP) or Next-Generation Anti Virus (NGAV) solution to help prevent malware from executing when found on a user machine. NAGV tools can learn the behaviors of the endpoint devices and query a signature database of vaccines for exploits and other malware on real time to help expedite containment and remediation to minimize threats.

Maximizing Resources With Technology as a Solution

With the significant increase in the number of and advancing sophistication of potential cyber security threats and security alerts, combined with a shortage of cyber security staff with the required skill set and knowledge, CISOs are under even more pressure to protect their organizations and ask themselves questions such as: How do I effectively investigate incidents coming in from so many data points? How can I quickly prioritize incidents that present the greatest threat to my organization? How can I reduce the amount of time necessary to resolve an incident and give staff more time hunting emerging threats?

They will need to assess their current organization security landscape and available resources, while assessing their skill level and maturity.  Based on the company size it may even make business sense to outsource some aspects, for example by hiring a Managed Security Service Provider (MSSP) to manage alert monitoring, threat detection and incident response. CISOs should also evaluate the range of tools available to them and make the decision whether they can benefit from utilizing Security Orchestration, Automation and Response (SOAR) technology to increase their security program efficiency and effectiveness within their current structure.

Security Infrastructure and Employee Training Are Paramount

In summary, CISOs will be faced with more advancing challenges and increasing threats and these are only set to continue over the coming months. They should ensure that their security infrastructures follow sufficient frameworks such as NIST, ISO, SANS, PCI/DSS, as well as best practices for application security, cloud computing and encryption.   

They should prepare to resource their security teams with adequate technology and tools to respond to threats and alerts and to minimize the impact as much as feasibly possible, with set policies and procedures in place. To enforce security best practices across all departments of the company, it is important that security decisions are fully understood and supported by the leadership team as well as human resources, with a range of corporate policies to meet the challenges of ever changing technologies.

CISOs need to promote security best practices and corporate policies, industry laws regulations and compliance by educating and training relevant stakeholders, starting with employees. The use of workshops, seminars, websites, banners, posters and training in all areas of the company will heighten people’s awareness to threats and exploits, increasing their knowledge, while also teaching them the best way to respond or to raise the alarm if there is a potential threat. The initial investment in education and training may be a burden on time and resources but in the long run will prove beneficial and could potentially prevent the company from experiencing a serious threat or penalty from non-compliance.

Completing a full analysis of current resources, skill sets and security tools and platforms will all play a part when deciding whether in-house or outsourced security operations is the best approach, but the benefits of using SOAR technology to leverage existing security products to dramatically reduce the response and remediation gap caused by limited resources and the increasing volume of threats and incidents, as well as to assist with important breach notification requirements, should not be overlooked.